Persistent or relapsing symptoms post-treatment *PRESSURE*

Dr. Abhay Moghekar

Associate Professor of Neurology, Otolaryngology and Neurosurgery Director – Center for CSF Disorders

Conflicts and Funding

- None relevant to this topic
- MAB of Spinal CSF Leak Foundation
- MAB of Hydrocephalus Association
- Research grant supported by Fujirebio Diagnostics

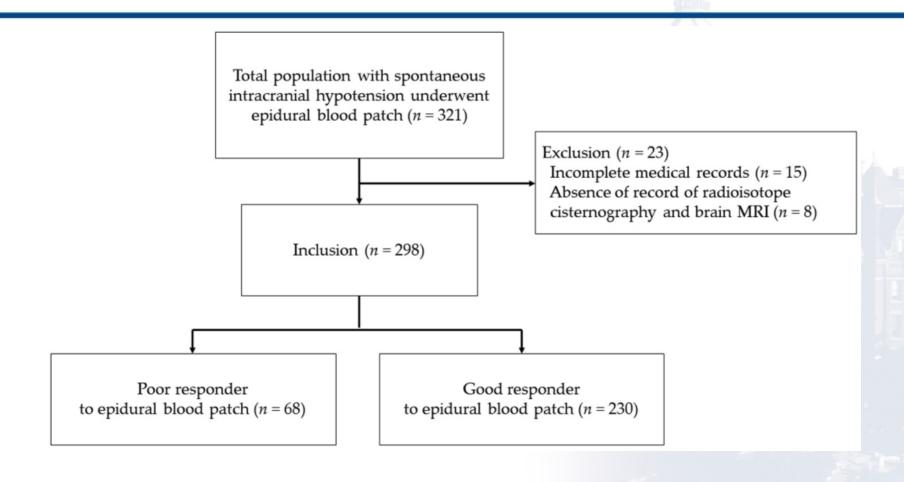
Generous funding provided by NIH and patients

2014....

- 33 yr old woman, sudden orthostatic headaches following kayaking on the weekend
- MRI classic dural enhancement, brainstem sagging, tonsillar descent
- CT myelo T6 meningeal diverticulum
- Targeted blood patch failed
- Targeted fibrin patch succeeded

But...

- Symptoms unchanged
- MRI normal
- Repeat CT myelo negative
- Only transient benefits with repeat empiric EBPs
- What next?



No resolution

- ICP monitoring with orthostatic challenge
- Supine ICP: 5 to 10 mm Hg
- Upright ICP: -2 to 5 mm Hg
- Never developed papilledema, No venous stenosis or other risk factors for IIH
- Imaging burden: > 20 CTs, > 30 MRIs, > 10 CT Myelograms including DSM, dynamic CTM at reference centers, no early uptake of tracer in kidneys or bladder or radionuclide scans
- Cumulative radiation exposure?

Poor responders to multiple EBPs 1:4

Park JY, Ro YJ, Leem JG, Shin JW, Oh Y, Choi SS. Predictors Associated with Outcomes of Epidural Blood Patch in Patients with Spontaneous Intracranial Hypotension. J Clin Med. 2021 Feb 28;10(5):922.

Poor responders to multiple EBPs

No demographic or clinical factors predicted poor responders

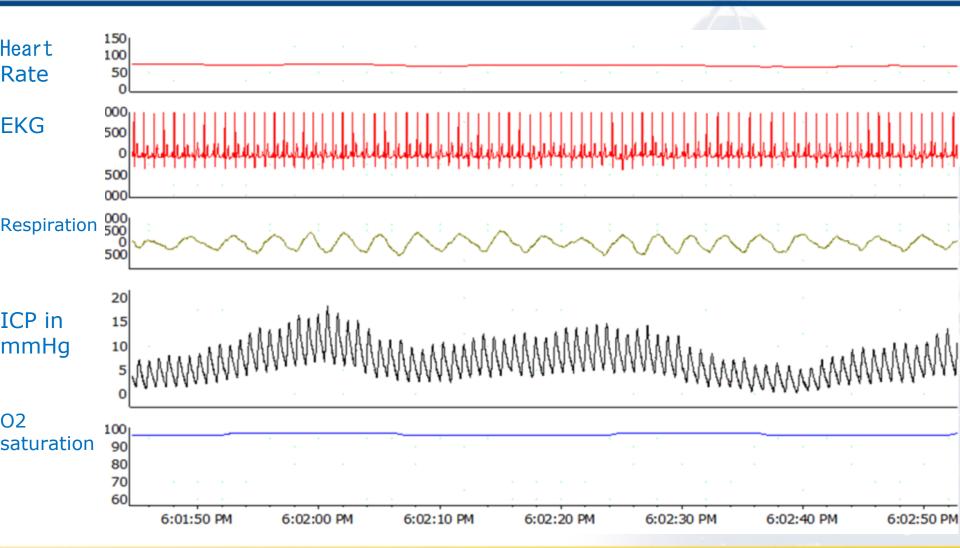
Variables	Total Patients (n = 298)	Poor Responders $(n = 68)$	Good Responders $(n = 230)$	p-Value
Age, years	38 (33–46)	38 (34-46)	38 (33–46)	0.952
Sex				
Male/Female, n (%)	108 (36.2%)/190 (63.8%)	27 (39.7%)/41 (60.3%)	81 (35.2%)/149 (64.8%)	0.499
Height, cm	164.6 ± 22.3	165.4 ± 8.9	164.4 ± 8.2	0.365
Weight, kg	58.0 (52.3-68.0)	58.5 (52.1-69.0)	58.0 (52.4-67.9)	0.816
Body mass index, kg/m ²	22.3 ± 2.9	21.9 ± 2.8	22.4 ± 2.9	0.270
Underlying disease				
Diabetes mellitus, n (%)	12 (4.0%)	1 (1.5%)	11 (4.8%)	0.310
Hypertension, n (%)	15 (5.0%)	0 (0.0%)	15 (6.5%)	0.027
Coronary arterial disease, n (%)	6 (2.0%)	3 (4.4%)	3 (10.3%)	0.130
Cerebrovascular accident, n (%)	1 (0.3%)	0 (0.0%)	1 (0.4%)	>0.999
Herniated intervertebral disc, n (%)	10 (3.4%)	2 (2.9%)	8 (3.5%)	>0.999
History of headache				
Migraine, n (%)	11 (3.7%)	5 (7.4%)	6 (2.6%)	
Tension headach, n (%)	3 (1.0%)	0 (0.0%)	3 (1.3%)	0.613
Cluster headache, n (%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	
Associated symptoms		, , , , , ,		
Nausea, n (%)	166 (55.7%)	42 (61.8%)	124 (53.9%)	0.194
Vomiting, n (%)	100 (33.6%)	29 (42.6%)	71 (30.9%)	0.056
Photophobia, n (%)	2 (0.7%)	1 (1.5%)	1 (0.4%)	0.400
Hearing impairment, n (%)	4 (1.3%)	2 (2.9%)	2 (0.9%)	0.220
Tinnitus, n (%)	65 (21.8%)	8 (11.8%)	24 (10.4%)	0.723
Vertigo, n (%)	1 (0.3%)	0 (0.0%)	1 (0.4%)	>0.999
Diplopia, n (%)	1 (0.3%)	0 (0.0%)	1 (0.4%)	>0.999
Duration of headache, days	10.0 (9.0-30.0)	15.0 (9.0-30.0)	10.0 (9.0-30.0)	0.579
Headache, numeric rating scale	7.0 (5.0-9.0)	7.0 (4.0-9.0)	7.0 (5.0–8.0)	0.790

Data are expressed as the mean \pm standard deviation, median (interquartile range), or number (%). Poor responders, patients who underwent epidural blood patch three or more times; good responders, patients who underwent epidural blood patch one or two times.

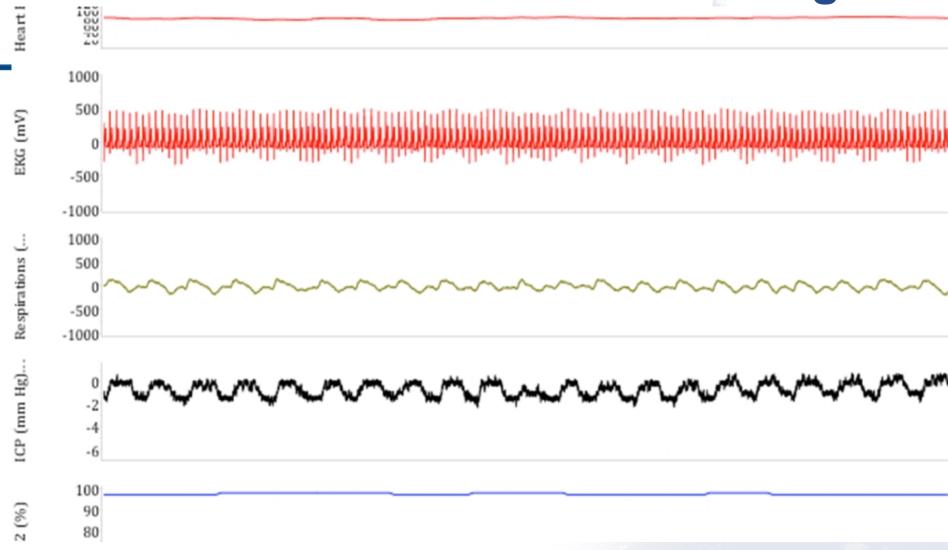
Poor responders to multiple EBPs

No differences in imaging characteristics

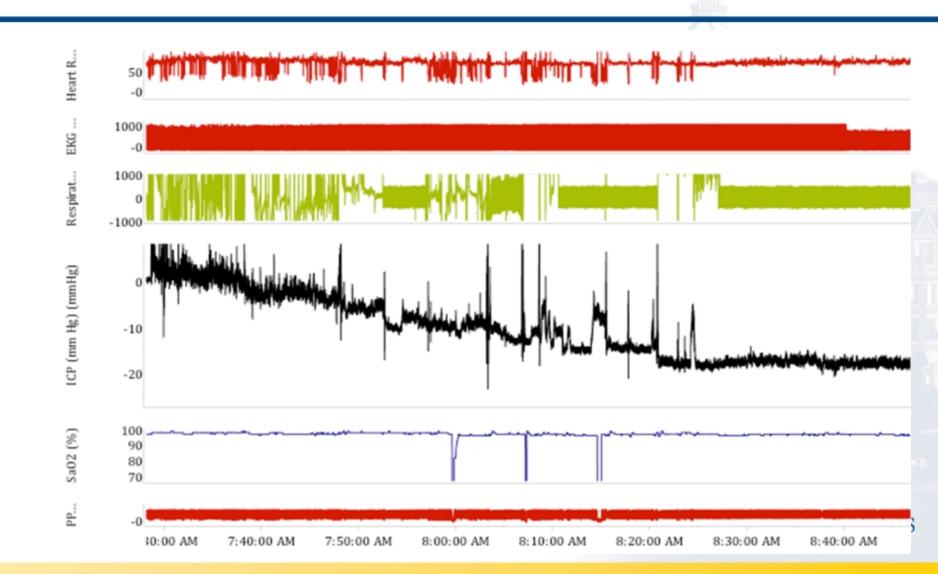
Variables	Total Patients (n = 298)	Poor Responders (n = 68)	Good Responders $(n = 230)$	p-Value	
Brain MRI signs					
Pachymeningeal enhancement, n (%)	161 (54.0%)	35 (51.5%)	126 (54.8%)	0.542	
Engorgement of venous structures, n (%)	101 (33.9%)	29 (42.6%)	72 (31.3%)	0.095	
Brain sagging, n (%)	40 (13.4%)	7 (10.3%)	33 (14.3%)	0.367	
Pituitary hyperemia, n (%)	32 (10.7%)	7 (10.3%)	25 (10.9%)	0.864	
Midline shift, n (%)	5 (1.7%)	0 (0.0%)	5 (2.2%)	0.592	
Midbrain-pons angle, degrees	55.3 ± 10.0	55.0 ± 8.8	55.3 ± 10.4	0.800	
Vein of Galen-Straight sinus angle, degrees	63.4 (46.6-74.1)	64.1 (43.0-74.6)	63.1 (47.5-73.5)	0.934	
Cisternography					
Level of cerebrospinal fluid leakage					
Cervical, n (%)	132 (44.3%)	29 (42.6%)	103 (44.8%)	0.755	
Thoracic, n (%)	153 (51.3%)	37 (54.4%)	116 (50.4%)	0.564	
Lumbar, n (%)	64 (21.5%)	19 (27.9%)	45 (19.6%)	0.140	
Undetermined, n (%)	45 (15.1%)	6 (8.8%)	39 (17.0%)	0.100	
Multiple leakage, n (%)	160 (53.7%)	43 (63.2%)	117 (50.9%)	0.159	
Cerebrospinal opening pressure, mmHg	4.8 (0.0-8.0)	4.5 (0.0-7.5)	5.0 (0.0-8.2)	0.580	
Early bladder activity, n (%)	59 (19.8%)	17 (25.0%)	42 (18.3%)	0.369	



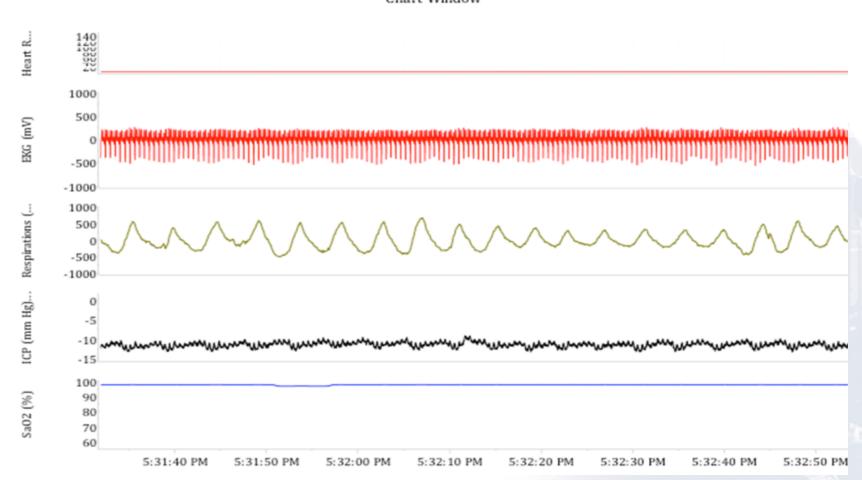
ICP Monitoring for SIH


- ICP Monitoring 2015 current: 291
- ICP Monitoring for SIH: 74
- F:M-2:1
- Mean Age: 34 ± 8 yrs
- Overnight ICP monitoring supine followed by Orthostatic challenge – inclined 45°, sitting, standing

Physiologic ICP – cardiac and respiratory modulation



No CSF Leak – ICP while sitting



Spinal CSF Leak – Bolt Patch protocol

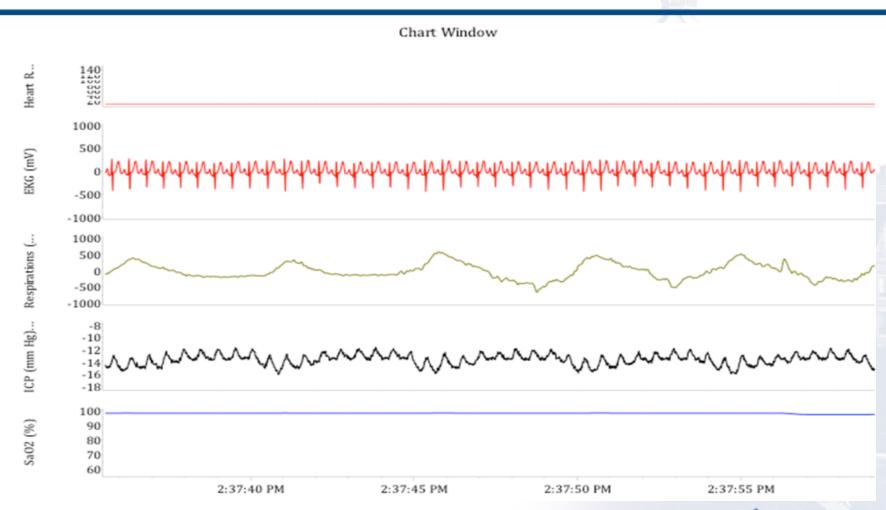

SIH – multiple perineural diverticula

Chart Window

SIH - CSF venous fistula

Outcomes

Orthostatic ICP < -10 mmHg: 4 / 74

What about the rest?

Chronic migraines
Tension type headaches
New daily persistent headaches
POTS

Treatments

- Topamax
- SNRIs/SSRIs
- Botox
- TCAs
- CGRP antagonists
- Calcium channel blockers

More than just a headache.....

- Fatigue
- Mental fog
- Dizziness
- Malaise
- Hearing loss, tinnitus
- Memory impairment
- Insomnia

Multiple Mechanisms

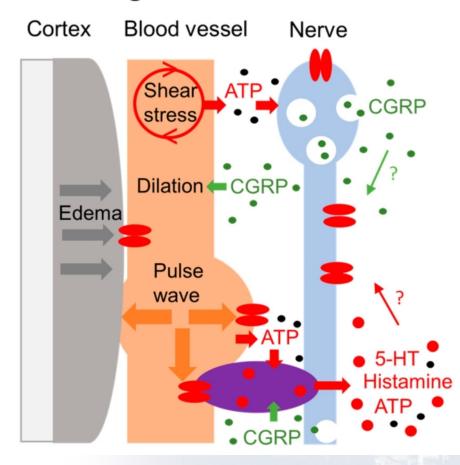
- Sympathetic and parasympathetic dysfunction
- Inflammatory milleu
- Mechanical Sensitization

Mechanism of nociception in low pressure headaches

- No baroreceptors in brain or meninges unlike carotid bodies
- What mediates the pain in low pressure syndromes

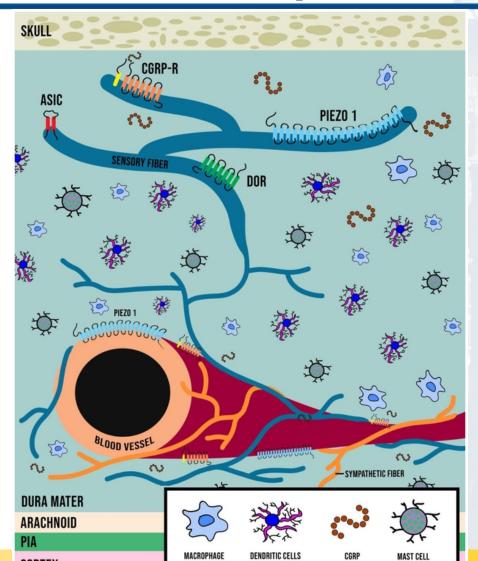
Role of *Piezo* – mechanosensitive ion channels

Activated by stretching, pulling, pushing, exposure to hypo- or hyper-osmotic solutions, and flow-induced shear stress

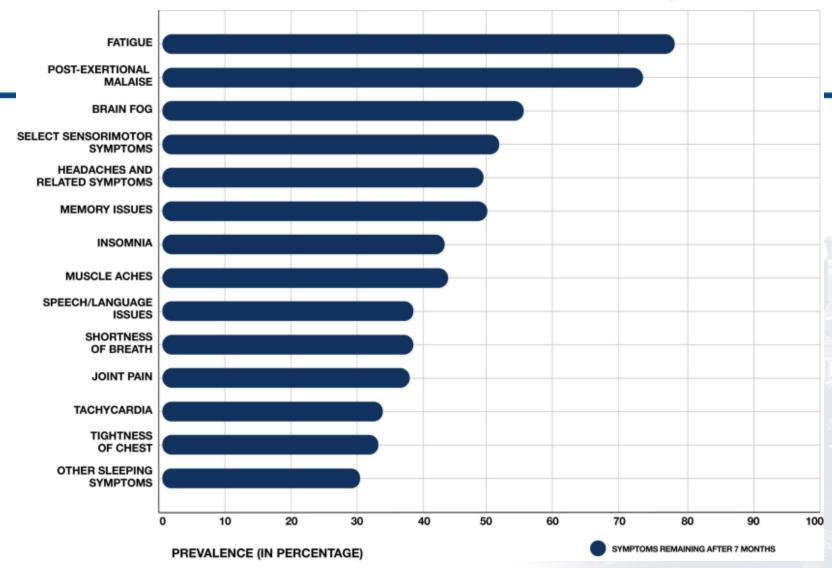


Stretch induced noccieption

Meninges - interictal state


Cortex Blood vessel Nerve Piezo1 CGRP Piezo1 Piezo1 Piezo2 Pulse wave Mast cell Piezo?

Migraine attack



Della Pietra, A.; Mikhailov, N.; Giniatullin, R. The Emerging Role of Mechanosensitive Piezo Channels in Migraine Pain. *Int. J. Mol. Sci.* **2020**, *21*, 696.

Evolving (lack of) understanding of nocciception

Proal AD, VanElzakker MB. Long COVID or Post-acute Sequelae of COVID-19 (PASC): An Overview of Biological Factors That May Contribute to Persistent Symptoms. Front Microbiol. 2021 Jun 23;12:698169.

PASC – Post Acute Sequelae of Covid19

- Analogous to Myalgic Encephalitis
- Post-Viral Syndrome following EBV infection

What is common to all such disorders?

- Heterogeneous
 - Persistent symptoms or evolution
 - New-onset symptoms
- Spectrum of physical, social and psychological consequences
- Different pathophysiologic processes

PRESSURE-CSF

Persistent, Relapsing or Extended SIH Symptoms despite Undetectable Radiologic Evidence of CSF leak

Proposed Study – 1 Natural History

- Multi-site
- Prospective
- Strict inclusion/exclusion criteria
 - DSM in lateral decubitus position negative
 - MRI Brain with contrast negative
 - Bern Score ≤ 2
 - For those with persistent epidural or paraspinal fluid collections, ICP monitoring with orthostatic ICP > -10 mm Hg or normal CSF outflow resistance 5-10 mmHg/ml/min
 - Tilt-table negative
 - Exclude underlying IIH LP, neuroopthalmology

Proposed Study - 1

- Outcomes:
 - Clinical characteristics that predispose to higher risk
 - Cognitive: neuropsychological assessment
 - Affective: GAD-7, PHQ-9, IESR
 - Imaging Volumetrics, CBVR, DTI, rsMRI
 - Biomarkers CRP, IL6, Ferritin, Cortisol
 - Functional Status

Proposed Study 2

Test of the hypothesis that a "pressure reset" occurs in some

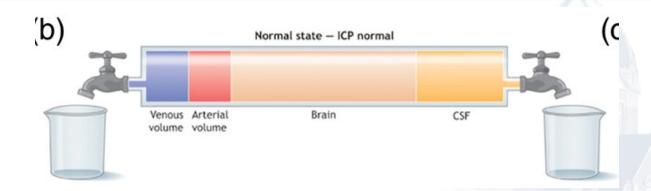
Are repeated empiric EBPs effective?

 Only treatment that works despite negative imaging studies

Proposed Study 2

 Randomized blinded sham trial – blood vs normal saline

 Scavone BM, Wong CA, Sullivan JT, Yaghmour E, Sherwani SS, McCarthy RJ. Efficacy of a prophylactic epidural blood patch in preventing post dural puncture headache in parturients after inadvertent dural puncture. Anesthesiology. 2004 Dec;101(6):1422-7


Proposed Study 3

- Multimodal intervention vs routine care
- Multimodal:
 - Prophylactic Medication
 - Graduated exercise
 - TM/Yoga/Mindfulness
 - Vagal nerve stimulation

Eg: FINGER study

Low Pressure vs Low Volume

 In a fixed volume (skull) lowering volume of its nondistensible contents (CSF) should lower pressures

OR

 If cerebral blood volume compensates for the low CSF volume, the venous distention (compliant vessels) should be seen on contrast enhanced MRI

Slippery Slope – higher bar for evidence

 You cannot have a syndrome of SIH with both Normal orthostatic ICP and Normal MRI

IIH without papilledema with normal ICP

Idiopathic NPH – The Emperor has no clothes

Thanks

- Dr. Mark Luciano
- Dr. Aruna Rao
- Dr. Ferdinand Hui
- Kristina Khingelova
- Dr. Majid Khan

