Mechanisms of Headache in Intracranial Hypotension

Stephen D Silberstein, MD

Jefferson Headache Center

Thomas Jefferson University Hospital

Philadelphia, PA

Overview

- What are the different pain fibers?
- Which are involved in pain transmission?
- What role does sensitization play in pain and headache?
- What causes headache?
- What causes low CSF pressure?
- What causes low CSF pressure headache?
 - Increased compliance?
 - HIP drift?

Sensory Nerve Fibers

Fiber type	Myelinated	Conduction velocity (meters/sec)	Sensory Information	Neurotransmitters
Α-β	Yes	30-100	Touch, vibration	EAA (NPY, GAL, CCK, SP, following activation or injury)
А-б	Yes	12-30	Initial sharp pain, touch, pressure	EAA
С	No	0.5-2	Dull pain, temperature	Glutamate, SP , CGRP , NKA

Acute Pain

Sensitization

- Increased responsiveness to stimuli
 - Hyperalgesia: Increase in pain sensitivity
 - Allodynia: Nonpainful stimuli now painful
- Peripheral sensitization
 - Increased sensitivity of nociceptive receptor
- Central sensitization
 - Increased spontaneous neuronal discharge
 - Expanded nociceptive receptive fields

Sensitization

What Causes Headaches?

- 1. Traction, tension, or displacement of pain-sensitive structures
- 2. Distention/dilation of intracranial arteries, veins or venous sinuses
- 3. Inflammation of pain-sensitive structures
- 4. Obstruction of CSF pathways
- 5. Primary central pain: involvement of pain-modulating systems

Anatomy of Headache Pain Pain Sensitive Cranial Structures

Intracranial Pressure

• Normal pressure:

70 to 200 (or 250?) mm H₂O

- Intracranial hypotension/hypovolemia
 - Symptoms with pressures < 70 mm H_2O
 - At times pressure not measurable
 - At times pressure normal
 - Most common cause LP

Intracranial Hypotension: Causes

A. LP: diagnostic, myelography and spinal anesthesia

- **B. Traumatic:** head or back trauma (<u>+</u> CSF leak)
- **C. Postoperative:** craniotomy, spinal surgery, postpneumonectomy
- D. Malfunctioning CSF shunt
- E. Spontaneous CSF leak
- F. Systemic illness: dehydration, diabetic coma, hyperpnea,

meningoencephalitis, uremia, severe systemic infection

Intracranial Hypotension Headache Mechanisms

- 1. Downward brain displacement due to loss of **CSF buoyancy**?
 - Could cause traction on pain-sensitive structures (esp. dura)
- 2. Intracranial CSF volume loss
 - Can cause compensatory dilation pain-sensitive intracranial venous structures
 - But Headache aggravated by jugular compression
 - Increases intracranial pressure and venous dilatation
 - Headache not caused by intracranial hypotension alone

Headache Mechanisms: Buoyancy Loss

- CSF cushions the brain
 - Does loss ↓ upward buoyant force and cause brain sag when patient is erect?
 - Sag increases tension on veins that anchor brain to dural venous sinuses
- But no evidence to support this
 - Despite CSF loss, brain remains surrounded by fluid, so no decrease in upward buoyant force

Headache Mechanisms: <u>Monroe-Kellie hypothesis</u>

- Sum of brain, CSF, and *intracranial* blood volume constant
 - $-\downarrow$ in one causes \uparrow in one or both of remaining two.
- CSF loss $\rightarrow \downarrow$ CSF pressure but not venous pressure
 - Pressure difference causes veins to dilate
 - More dilatation in upright posture
- Dilatation of pain sensitive intracranial venous structures
 - \rightarrow orthostatic headache
- Evidence:
 - Pial veins of anesthetized cat dilate with CSF removal
 - Jugular venous compression increases headache intensity
 - Acute venous sinuses distension produces pain

Forbes HS, Nason GI. Vascular responses to hypertonic solutions and withdrawal of CSF Arch Neurol Psychiatry 1935;34:533–47.

Pial Vessels Dilate as CSF Pressure Decreases

Decreasing CSF Pressure

Forbes HS, Nason GI. Vascular responses to hypertonic solutions and withdrawal of CSF Arch Neurol Psychiatry 1935;34:533–47.

Intracranial Hypotension or Intracranial Hypovolemia or Neither?

CSF Pressure

- Orthostatic headache can occur with normal pressure
- No correlation between CSF pressure and headache
- Jugular compression raises pressure and worsens headache

CSF Volume

• Loss correlates to post-LP headache

Craniospinal Elasticity (Compliance)

• Altered distribution due to spinal loss of CSF

Pressure Volume Curves and Compliance

- volume pressure curve (less compliant)
- ---- pressure-volume curve (more compliant)
- Distensibility: slope of volume– pressure curve.
 - − \uparrow Compliance $\rightarrow \uparrow$ Distensibility
 - ↓ pressure → ↑ Compliance

Compliance of Membranes Enclosing CSF

Different throughout system

- Rostral component (covered by rigid skull)
 - Depends upon compressibility of intracranial venous and capillary vessels
- Caudal component
 - Depends on degree of filling of spinal dural sac
- Increased lumbar compliance (more give) causes
 <u>HIP</u> to be displaced caudally

Hydrostatic Indifferent Point (HIP)

- Point were upright CSF pressure = CSF recumbent pressure
 Normally between C7 and T5
- CSF leak may increase lumbar compliance (more give)
 - Increased lumbar compliance shifts HIP downward
 - Independent of decreased CSF volume or opening pressure
- Upright ICP more negative: equals distance HIP displaced
 - Decrease in addition to that resulting from loss of filling pressure
- Change in lumbar compliance alone (without CSF leak) could cause orthostatic headache

CSF Leak: Increased Caudal Compliance of CSF Space Relative To Cranial End

- Lumbar dural sac compliance increases with CSF leak
 - Causes caudal HIP displacement
 - Upright ICP more negative equal to distance HIP displaced
 - Decrease in addition to that due to loss of filling pressure
- Cranial compliance decreases with CSF leak
 - Cerebral veins normally slightly collapsed, because CSF pressure exceeds dural sinuses pressure
 - $-\downarrow$ CSF pressure \rightarrow venous engorgement
 - Walls become stiffer and less compressible

CSF Leak and Dural Compliance

Lumbar dura usually resists stretch

- Limits distensibility of caudal CSF space
- 1. Large holes increase lumbar compliance by
 - Exposing CSF to more compliant epidural space
 - Epidural veins, epidural fat, and paravertebral soft tissue
- 2. **J** filling pressure increases lumbar compliance
 - Lumbar dural sac collapses and becomes more compliant
 - Creates space to accommodate CSF when patient upright

Does CSF Rhinorrhea Produce Headache?

Rostral CSF leak displaces HIP less than that due to LP

• Only 9cm caudally

WHY?

- Increased rostral CSF space should move HIP rostrally
- But ↓ filling pressure →↑ caudal dural sac compliance
 - Overcomes effects of rostral anatomic change.
 - Thus rostral leaks may not lower HIP enough to cause headache

Magnaes B. Body position and cerebrospinal fluid pressure J Neurosurg 1976;44:698–705.

Lumbar Puncture

LP Causes Caudal Displacement of HIP

- Initial CSF pressure: 18 cm recumbent and 53 cm sitting
 HIP 35 cm (53-18)
- **Post LP** CSF pressure: 5.5 cm recumbent and 28 cm sitting
 - HIP now 22.5 cm (28-5.5)
 - HIP displaced 12.5 cm (35-22.5) caudally
- Filling pressure ↓ 12.5 cm (18 5.5)
- ICP \downarrow 12.5 cm recumbent, but \downarrow 25 cm (12.5+12.5) upright
- Standing \rightarrow marked \uparrow in transmural venous pressure
 - Intracranial veins distend acutely
 - More distension due to loss of filling pressure
- Acute orthostatic venous distention causes orthostatic headache

Nelson MO. Postpuncture headaches Arch Dermatol Syph 1930;21: 615–27.

Spinal CSF Compartments: Cervical

- Cervical subarachnoid space differs from lumbar
 - Lumbar CSF space collapses but cervical CSF space expands with Valsalva maneuver
 - Opposite may occur in LPH
- Caudal HIP displacement
 - Cervical CSF pressure decreases
 - Cervical dura collapses but cervical epidural veins dilate
- Cervical dura compliance \checkmark
 - But does not overcome caudal HIP displacement from **↑** lumbar compliance

Spinal CSF Compartments : Cervical

- Standing: CSF from cervical and intracranial compartments move into more compliant lumbar sac
- Cervical dura partially collapses with compensatory acute distension of cervical epidural veins
 - Can cause orthostatic posterior cervical pain
 - Intracranial veins dilate causing orthostatic headache
- Young children and older adults: have stiffer caudal space
 - Less increase in caudal compliance with dural tear
 - HIP displaced less and post LP headache less common

Intracranial Hypotension Headache: Conclusion

- Cause: abnormal distribution of craniospinal elasticity
- ↑ lumbar compliance → HIP to move caudally → more intracranial hypotension and venous dilation in erect position
- Can explain: orthostatic character of headache
 - Spinal not cranial leakage produces headache
 - Imperfect correlation between CSF pressure and headache